7.9 C
New York
Monday, December 5, 2022

Rule set production, multiple kernel learning, and multi-expression programming – INDIAai

In-depth and nuanced coverage of leading trends in AI One
Latest updates in the world of AI
Information repositories on AI for your reference
A collection of the most relevant and critical research in AI today
Read the latest case studies in the field of AI
Curated sets of data to aid research initiatives
The best of AI brought to you in bite-sized videos
World-class policy developments and accepted standards in AI development
Roles spanning various verticals and domains in big data and AI
Latest events in AI locally and internationally
Pieces covering the most current and interesting topics
VCs, PEs and other investors in AI today
Top educational institutions offering courses in AI
Profiles of visionary companies leading AI research and innovation
India’s brightest and most successful minds in AI research and development
A glimpse into research, development & initiatives in AI shaping up in countries round the world
Read all about the various AI initiatives spearheaded by the Government of India
Latest initiatives, missions & developments by GoI to drive AI adoption
Follow INDIAai
About INDIAai
Subscribe to our emails

By Dr Nivash Jeevanandam
Several innovative machine-learning methods need to be utilized. This section discusses rule set production, multiple kernel learning, and multiple expression programming.
Machine learning teaches computers to behave like people by providing them with previous data and predictions about what might happen in the future. This article will examine exciting machine learning techniques like rule set production, multiple kernel learning, and multi-expression programming.
Genetic Algorithm for Rule Set Production
The genetic Algorithm for Rule Set Production (GARP) uses genetic algorithms to represent species’ ecological niches. The created models define the environmental factors (such as precipitation, temperature, height, etc.) that the species should be able to tolerate to maintain populations. Local observations of species and associated environmental characteristics are utilized as input to describe potential survival limits for the species. 
Furthermore, geographic information systems frequently store these environmental variables. We can interpret a random collection of mathematical rules known as a GARP model as constraining environmental circumstances. Each rule is viewed as a gene, and the collection of genes is then randomly mixed to produce a variety of other models that describe the potential for the species to exist.
Multiple kernel learning
Multiple kernel learning is a group of machine learning techniques that employ a preset set of kernels and train an algorithm to find the best linear or non-linear combination of kernels. Here are a few justifications for using multiple kernel learning: 
a) reducing bias caused by kernel selection while enabling more automated machine learning methods, and 
b) combining data from different sources (for example, sound and images from a video) that have other notions of similarity and thus require different kernels are some reasons to use multiple kernel learning. 
We can use multiple kernel algorithms to combine the kernels that have already been built for each distinct data source instead of developing a new kernel. Furthermore, numerous kernel learning methods have been created for supervised, semi-supervised, and unsupervised learning. Although several algorithms have been designed, most research has focused on the supervised learning situation using linear combinations of kernels.
Many applications, including event detection in video, object recognition in pictures, and biological data fusion, have used various kernel learning techniques.
Multi expression programming
The Multi Expression Programming (MEP) technique uses an evolutionary approach while creating computer programs. The capability to encode numerous solutions in the same chromosome was a novel feature introduced by MEP. In contrast to previous strategies that store a single key in the chromosome, we can examine more search space. Most of the time, there is no cost associated with this advantage in terms of running time or resources used.
MEP is an evolutionary algorithm for constructing mathematical functions describing a data set. MEP is a variation of Genetic Programming that encodes many solutions on a single chromosome. MEP representation is not particular (multiple representations have been tested). In their most elementary form, MEP chromosomes consist of linear strings of instructions. The three-address code influenced this illustration. MEP’s power lies in its capacity to encode several problem solutions on the same chromosome. It allows one to investigate more significant regions of the search space. Unlike genetic programming variants encoding a single key in a chromosome, this benefit incurs no running-time penalty for most problems.
About the author
Senior Research Writer at INDIAai
Share via
Understanding the environmental footprint of AI
Four riveting data labelling courses
Join our newsletter to know about important developments in AI space


Related Articles


Please enter your comment!
Please enter your name here

Latest Articles